
Quick Tutorial on Modifying/Extending LAMMPS

Steve Plimpton

LAMMPS Workshop
24 Feb 2010

 1. Extending LAMMPS
 2. Coupling LAMMPS with other codes
 3. Python + LAMMPS

Simplest Customizations

•  Add a keyword to thermo output or dump custom

•  Add a new math option to variable command

•  These files are flagged with “customize” comments:
thermo.cpp, dump_custom.cpp, variable.cpp

•  Often better to customize output via new compute or fix.

•  See doc/Section_howto.html, section 4.15 for all output options:
fix ave/time, fix ave/spatial, fix ave/histo, fix ave/atom
compute reduce

Extending LAMMPS via Styles

•  In hindsight, this is best feature of LAMMPS
80% of code is “extensions” via styles
only 35K of 175K lines is core of LAMMPS

•  Easy for us and others to add new features via 14 “styles”
new particle types = atom style
new force fields = pair style, bond style, angle style, dihedral style, improper style
new long range = kspace style
new minimizer = min style
new geometric region = region style
new output = dump style
new integrator = integrate style
new computations = compute style (global, per-atom, local)
new fix = fix style = BC, constraint, time integration, ...
new input command = command style = read_data, velocity, run, ...

•  Enabled by C++
virtual parent class for all styles, e.g. pair potentials
defines interface the feature must provide
compute(), init(), coeff(), restart(), etc

How to Add a Feature as a new Style

•  Details are in doc/Section_modify.html

•  Create a new class (*.cpp and *.h) file
derive from parent virtual class
e.g. RegTriangle class from Region class
provide the various methods the interface requires

•  Put these lines in header file: (no longer necessary to edit style.h)
 #ifdef REGION_CLASS
 RegionStyle(triangle,RegTriangle)
 #else
 ... (usual class header info)
 #endif

•  Drop 2 files in src dir, re-compile LAMMPS
•  Presto: your input script can use “region_style triangle” comand

Example: RegTriangle class

•  25 lines of code (leaving out 2 methods)

•  constructor (int narg, char **arg)
reads arguments: x1 y1 x2 y2 x3 y3
determines extent = bounding box

•  inside (double x, double y, double z):
determine if (x,y) is inside triangle (2d only)
3 positive cross products inside

region_triangle.h

#ifdef REGION_CLASS
RegionStyle(triangle,RegTriangle)

#else

#include "region.h"

namespace LAMMPS_NS {

class RegTriangle : public Region {

 public:
 RegTriangle(class LAMMPS *, int, char **);
 int inside(double, double, double);
 int surface_interior(double *, double);

 int surface_exterior(double *, double);

 private:

 double x1,y1,x2,y2,x3,y3;
};

}

#endif
#endif

region_triangle.cpp

RegTriangle::RegTriangle(LAMMPS *lmp,
 int narg, char **arg) :

 Region(lmp, narg, arg)
{
 options(narg-8,&arg[8]);

 x1 = xscale*atof(arg[2]);
 y1 = yscale*atof(arg[3]);
 x2 = xscale*atof(arg[4]);

 y2 = yscale*atof(arg[5]);
 x3 = xscale*atof(arg[6]);
 y3 = yscale*atof(arg[7]);

 extent_xlo = MIN(x1,x2);
 extent_xlo = MIN(extent_xlo,x3);
 extent_xhi = MAX(x1,x2);

 extent_xhi = MAX(extent_xhi,x3);
 extent_ylo = MIN(y1,y2);
 extent_ylo = MIN(extent_ylo,y3);
 extent_yhi = MAX(y1,y2);

 extent_yhi = MAX(extent_yhi,y3);
 extent_zlo = -0.5;
 extent_zhi = 0.5;

}

// inside = 1 if x,y,z is inside or on
 surface

// inside = 0 if x,y,z is outside and not
 on surface

int RegTriangle::inside(double x,
double y, double z)

{
 double side1 = (x-x1)*(y2-y1) –
 (y-y1)*(x2-x1);

 double side2 = (x-x2)*(y3-y2) –

 (y-y2)*(x3-x2);
 double side3 = (x-x3)*(y1-y3) –
 (y-y3)*(x1-x3);

 if (side1 > 0.0 && side2 > 0.0 &&
 side3 > 0.0) return 1;

 return 0;

}

Friction Example: examples/friction

examples/friction/in.friction
Replace: region lo-asperity sphere 32 7 0 8

 region hi-asperity sphere 18 15 0 8
With: region lo-asperity triangle 26 7 32 14 38 7

 region hi-asperity triangle 12 15 24 15 18 8

If added surface_interior() and
surface_exterior()

 could have triangular-shaped container
 via walls, triangular obstacles in flow,
triangular indenter, etc

Computes

•  Computes are used to calculate instantaneous quantities:
global scalar or vector or array
per-atom scalar or vector
local vector or array

•  Their results are stored, so can be accessed by other
fixes, computes, variables, thermo output, dump files

•  Computes can store old per-atom info by using a fix, e.g. compute msd

•  Computes can use neighbor lists, e.g. compute group/group

•  New per-molecule computes, e.g. compute msd/molecule

•  See doc/compute.html for details (~40 of them)

•  Define particle attributes

•  Loop over timesteps:

communicate ghost atoms

build neighbor list (once in a while)
compute forces
communicate ghost forces

output to screen and files

Fixes are most powerful, flexible Style

•  Define particle attributes mass, x, v, f, charge, bonds, angles,
 orientation, torque, dipole, shear history, ...

•  Loop over timesteps:
fix_initial NVE, NVT, NPT, rigid-body integration
communicate ghost atoms
fix_neighbor insert particles
build neighbor list (once in a while)
compute forces
communicate ghost forces
fix_force SHAKE, langevin drag, wall, spring, gravity

fix_final NVE, NVT, NPT, rigid-body integration
fix_end volume & T rescaling

output to screen and files

•  Fixes can operate on sub-groups of atoms, add per-atom storage,
communicate, write status to restart file, ... see doc/fix.html for details (75)

Coupling LAMMPS to Other Codes

•  LAMMPS can be built as library, instantiated many times

•  Method 1: MD is the driver
MD FE
enabled by fixes, link to external library
coupled rigid body solver from RPI

•  Method 2: Other code is the driver
FE MD
build LAMMPS as a library
call from C++, C, Fortran, Python
low-overhead to run MD in spurts
invoke low-level ops (get/put coords)

•  Method 3: Umbrella code is the driver
Umbrella code calls MD and FE
could run LAMMPS on P procs, FE on Q procs, talk to each other
weʼre linking LAMMPS to a MC Potts code for stress-driven grain growth

•  Challenge: balance the computation so both codes run efficiently in parallel

Python wrapping of LAMMPS

•  Use Python ctypes (2.5 or later) to wrap C-interface in src/library.h

•  Build LAMMPS (and MPI, FFTW, etc) as shared library via setup.py

•  Can instantiate one or more LAMMPS:
invoke LAMMPS scripts or commands from Python
grab/change atom coords or other properties, etc

>>> from lammps import lammps
>>> lmp = lammps(sys.argv)
>>> lmp.file(“in.lj”)

>>> lmp.command(“run 1000”)
>>> del lammps

•  Extend by adding to 2 files: src/library.cpp and python/lammps.py
•  Could wrap LAMMPS in a GUI or do Python-based viz
•  Can run in parallel, if your Python is extended with MPI (e.g. PyPar)

def file(self,file):
 self.lib.lammps_file(self.lmp,file)

def command(self,cmd):
 self.lib.lammps_command(self.lmp,cmd)

